Suparna Das

Branch Chief Supervisory Statistician at the Treatment Services Branch, Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration

Photo of Suparna Das

Education: Ph.D. in Geography (University of Utah), M.A. in Regional Planning and Development (Jawaharlal Nehru University), B.S. in Geography (University of Calcutta) 

The following profile was compiled by Brendan Vander Weil (Texas State University) for the Encoding Geography initiative. To learn more, visit:

Please describe your job, employer, and the primary tasks you perform in your position.  

I’m currently responsible for supervising an expanding group of talented statisticians, behavioral health scientists, data analysts and epidemiologists. Together we manage data collection efforts, disseminate various products (reports, publications, briefings, policy documents) and advise behavioral health policies for the administration. The Treatment Services Branch (TSB) is responsible for three major behavioral health data collection and surveillance systems: Drug Abuse Warning Network (DAWN) and Behavioral Health Information Surveillance Systems (BHSIS) and provide all statistical support for Buprenorphine Waiver Notification Systems (BWNS).  

Before joining SAMHSA in March 2021, for close to seven years I was working as the statistician and viral hepatitis epidemiologist for DC Department of Health (DOH). I was also part of the COVID-19 Task force for DC from 2020–2021. 

How has your education/background in geography prepared you for this position? 

Geo-computation, from my understanding, is the “art and science of solving complex geographical (spatial) problems through computation” (Source unknown). I want to take this opportunity to iterate that Geographical Information Systems (GIS) and Geographical Information Sciences (GISc) are NOT interchangeable. I strongly believe that we as geographers can do a lot more than make maps. This belief has been the central tenet of my career in public service. We can assist decision-making in the most scientific method with our understanding of space and spatial changes over time.   

As a graduate student in India (Jawaharlal Nehru University (JNU)) and the U.S. (University of Utah), I was lucky to have received extensive training as a spatial scientist and demographer. This expanded my understanding of population sciences and geo-computation, which I apply every day in my position to improve health outcomes for people. 

What is an example of applying geography concepts and skills in order to analyze and solve problems in your work? 

I have several projects that are currently being implemented where I am using geo-computational methodologies, but we will have to wait for them to be released through SAMHSA. For me, it is impossible to resolve mental health and substance abuse disparities and encourage health equity without spatial thinking and geo-computation. SAMHSA (specially CBHSQ) understands that and encourages discussion on applying geo-computation while also supporting and encouraging researchers to use for analytical and geo-computational purposes, among many other projects.  

From my previous position at DC DOH, where I spent close to seven years, I was able to implement several geo-computational projects. I published as much as I could to make sure people knew about administrative data collection and the impact of geo-computation in policy. One project example is DC’s effort to End the HIV Epidemic (EHE).  

I was proud to have been an integral part of the EHE implementation with the DC DOH, which has achieved the first of its 90/90/90 goals ( of 90% of people living with HIV being aware of their HIV status (and now aiming for 95%). We were committed to implementing evidence-based policies to improve care for people living with HIV and create access to prevention and tools to stop new infections.   

I used spatial analysis to find high-risk areas that needed immediate attention, resource re-allocation, and Pre-Exposure Prophylaxis (PrEP) to reach the EHE goals. I was responsible for monitoring and evaluation (M&E) of Centers for Disease Control and Prevention’s Social Network Strategy (SNS) to identify new HIV diagnoses for DC.  

For M&E, I was responsible for programmatic data collection, program monitoring, evaluating the programs and the outcomes, providing technical support and assisting in resource allocation. I then mapped the outcomes for the community-based organizations (CBOs) for improvements. The project was instrumental to a separate proposal for using geolocation-based applications to identify new HIV diagnoses for states to implement.  

What types of geographic questions did you ask and think about in your project? 

My questions as a public servant always have a two-tier approach:  

In the first tier: What is the impact of my project on the lives of people and what outcome do I want to answer through this project. I restrict my projects to non-exploratory but policy-oriented questions.  

In the second tier: My projects span demography, GISc and spatial epidemiology or health geography. I do not have any projects or have been part of any project that does/did not entail extensive statistical/data management-based coding.  

What types of data did you acquire to support your project?  

I always use administrative data collection for my projects within my role as a public servant. These data collection tools inform policies within the administration. I encourage researchers in academic settings to use them as well. There are several administrative data sets available which can be instrumental in framing accurate questions. I also encourage researchers to read annual reports to understand their needs. SAMHSA has several such data collection efforts which are publicly available through public use files 

What types of content knowledge and skills (both geographic and more general) did you use to evaluate, process, and analyze the data you gathered for your project? 

A large part of my job is to make sure that administrative data is collected without any glitches and plan how to enhance data collection so that it will assist health related policies in the United States. The scope of each ongoing project is different, thus, as a supervisor, my job is to assign it to the appropriate subject matter expert (SME) who would be responsible to evaluate, process and analyze the data.  

As for projects that I take interest in, they are ones that have a large spatio-temporal aspect to it or have predictive capacity.  

How did you communicate the results of your project (e.g., writing technical reports, making maps and geo-visualizations, creating graphics, data tables, etc.)? Do you have a recent product or publication to share with us as an example?  

I have communicated my results to multiple stakeholders, ranging from scientific audiences, panels, political stakeholders, community-based organizations, legal groups, media (including interviews), administrative leaderships, and the public. The communication strategies I use differ based on the audience. I have generated reports, technical documentation, maps for program evaluation for resource allocation, publications, and conference proceedings.  

What are the criteria that you use to assess the quality of your results 

I look at the impact of my project on improving health outcomes for people and its scientific validity – in other words, I’m looking at the impact of my results on implementing evidence-based policy. 

This material is based upon work supported by the National Science Foundation under Grants No. 2031418, 2031407, and 2031380 (Collaborative Research: Encoding Geography – Scaling up an RPP to achieve inclusive geocomputational education). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation