Satellite Geodesy for Science and Hazard Applications
Some Examples from Africa

Eric Calais (Purdue University, IN, USA - ecalais@purdue.edu)
Sarah Stamps, Laura Bennati (Purdue University)
Elifuraha Saria (Ardhi University, Dpt. of Geomatics, Dar Es Salaam, Tanzania)
Evelyne Mbede (Department of Geology, Univ. of Dar Es Salaam, Tanzania)
Elias Lewi, Atalaye Awele, Gezaghene Yirgu (University of Addis Ababa, Ethiopia)
Chris Hartnady (UMVOTO (Pty) Ltd, South Africa)
Ludwig Combrinck (Hartebeestoek Radio Astronomy Observatory, South Africa)
Cindy Ebinger (University of Rochester, NY, USA)
Damien Delvaux, Francois Kervyn (Royal Museum for Central Africa, Belgium)
Jean-Mathieu Nocquet (CNRS Geosciences Azur, Nice, France)
A natural laboratory for continental breakup
At the Surface…

Earthquakes

Volcanoes
Questions posed

• How do continents break apart to form oceans: physics of continental breakup? Forces at play / strength of the lithosphere? Role of deep-earth processes (mantle)?
• Can we quantify the hazards posed by actively deforming areas?
 → Need to measure deformation of Earth surface from large scale (plate motion) to local scale (individual earthquakes and volcanoes)
 → Satellite geodesy:
 – GNSS = provide autonomous geo-spatial positioning with discrete, global, coverage
 – Radar interferometry = provide ground deformation measurements with continuous, local, coverage
Phase measurement

Sat-rec. distance = \[\Phi_i^k(t) = \rho_i^k(t) \times \frac{f}{c} + (h_i^k(t) - h_i(t)) \times f + ion_i^k(t) + trop_i^k(t) - N_i^k + \varepsilon \]

Precision of phase data \(\sim 0.1\% \) wavelength \(\Rightarrow \) precision of position \(\sim \) few millimeters
GPS station in Dar Es Salaam, Tanzania
Current Plate Motions

Earthquakes M>6 (NEIC) - GPS velocities ITRF2005

Somalia/Nubia Euler poles:
- Geologic
- Geodetic

2 cm/yr
Training

With the Survey and Mapping Department, Tanzania

With students in the field
On-going Deformation in Afar, Ethiopia

Afar: a young volcanic province at the triple junction between Arabia, Nubia, and Somalia plates.
September 2005: earthquake swarm, open fissures, small volcanic eruption

“Boinas” = only source of water...
Satellite Radar Interferometry

- Two successive satellite passes over region of interest, compute range difference
- Remove the interferometric phase due to geometry and topography.
- If the ground does not move, then residual phase will be zero apart from effects of environmental and instrumental noise.
- If the ground moves between SAR observations, then the residual phase will not be zero.
Ground displacement: up to 5 m in ~2 weeks

1 fringe = 2.8 cm displacement in ground-satellite direction

6 May – 28 Oct 2005
• 2.5 km³ magma intruded along dyke (Mt St Helens 1980 1.2 km³; Krafla ~ 1 km³ total).
• 0.5 km³ sourced from Dabbahu and Gabho volcanoes at North.
• Where does the rest of the magma come from? How are magma chambers replenished? Where does magma evolve?
• Is it over…?
The “plumbing system” at work

Next 8 months: the magmatic plumbing system at work (blue areas = inflation, red = deflation)

Then a new, smaller, dyke intrusion
A long-lasting volcano-tectonic crisis

Comparison with a similar size rifting event in Iceland

Briefing Afar authorities (Ethiopia) about volcanic hazard
On-going activity in Natron rift

Step 1 (before July 17): aseismic slip on a NW-dipping normal fault

Step 2 (July 17 - August 21): dyke intrusion
Climate Change

• 50-year-long drying trend tightly linked to substantial warming of the Indian Ocean => by mid-century there could be a 10 to 20% drying in the Feb-Apr wet season compared with the average for the last half of the 20th century (J. Hurrel, NCAR).

• Is Sahel getting rainier? Debated…

• Uncertainties in projections likely to remain high as long as gaps persist in collecting meteorological data over Africa.

• Major difficulty: measuring water vapor and its interannual to daily variability --> can be done using GNSS signals
ENSO and African Climate

MODIS images of integrated column water vapor illustrate the interannual variability of the Inter-tropical convergence zone, linked to El Nino.

- GPS measurements of tropospheric water vapor in the SW Pacific showing the 1998 El Nino event.
- High accuracy and stability.
- Continuous time sampling => information at all temporal scales from diurnal to interannual variability.
A unified geodetic reference frame for Africa: AFREF

- Requirements similar to geophysics
- Other continents:
 - Japan > 2,000 GPS
 - North America ~2,000 GPS
 - Western Europe ~1,000 GPS
- Crucial importance of open data policy
Summary

- East African Rift remains the least understood of all major tectonic plate boundaries with first-order science questions at stake.
- Africa particularly vulnerable to climate change - regional models have large uncertainties.
- Critical lack of basic quantitative data:
 - How fast do plates move, is there magma movement at depth?
 - Atmospheric water vapor: interannual variability and diurnal cycle data crucial to model long term climate in Africa.
- GNSS in Africa is key component for environmental monitoring: solid earth deformation and climate trends.
- Added benefits, e.g. unified reference frame for mapping applications.